$Y=$ neutral donor ligand) (Meunier-Pieret et al., 1980; Rebizant et al., 1983, 1985) the U atom is pentahapto covalently bonded to the indenyl ligand.

References

Backer, C. C., Halstead, G. W. \& Raymond, K. N. (1976). Struct. Bonding (Berlin), 25, 34-51.
Burns, J. H. \& Laubereau, P. G. (1971). Inorg. Chem. 10, 2789-2792.
Enraf-Nonius (1981). Structure Determination Package. Version 18. Enraf-Nonius, Delft.

Hohmann, M. \& Ziegler, M. (1978). Diplomarbeit of M. Hohmann, Anorganisch-Chemisches Institut, Univ. of Heidelberg, Federal Republic of Germany.

International Tables for X-ray Crystallograpy (1974). Vol. IV Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Main, P., Hull, S. E., Lessinger, l., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1978). MULTAN78. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Meunier-Pieret, J., Germain, G., Declerce, J.-P. \& Van Meerssche, M. (1980). Bull. Soc. Chim. Belg. 89, 241-245.
Rebizant, J., Spirlet, M. R. \& Goffart, J. (1983). Acta Cryst. C39, 1041-1043.
Rebizant, J., Spirlet, M. R. \& Goffart, J. (1985). Acta Cryst. C41, 334-336.
Spirlet, M. R., Rebizant, J. \& Goffart, J. (1982). Acta Cryst. B38, 2400-2404.

Acta Cryst. (1986). C42, 1500-1502

Caesium Tris(\boldsymbol{N}-bromosuccinimide)bromate(1-)

By Christer Svensson and Jörgen Albertsson
Inorganic Chemistry 2, Chemical Center, University of Lund, PO Box 124, S-22100 Lund, Sweden
and Lennart Eberson
Organic Chemistry 3, Chemical Center, University of Lund, PO Box 124, S-221 00 Lund, Sweden

(Received 16 April 1986; accepted 20 June 1986)

Abstract

Cs}\left[\mathrm{Br}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{BrNO}_{2}\right)_{3}\right], M_{r}=746.8\), trigonal, $R \overline{3}, \quad a=14.013$ (2),$\quad c=17.921$ (9) $\AA, \quad V=$ $3047(1) \AA^{3}, \quad Z=6, \quad D_{m}=2.45(1), \quad D_{x}=$ $2.441(1) \mathrm{g} \mathrm{cm}^{-3}, \quad \lambda(\mathrm{Mo} \mathrm{Ka})=0.71073 \AA, \quad \mu=$ $96.6 \mathrm{~cm}^{-1}, F(000)=2088, T=296 \mathrm{~K}, R=0.047$ for 1876 observed reflections. The structure comprises trigonal pyramidal $\left[\mathrm{Br}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{BrNO}\right)_{2}\right)_{3}$ - complexes with $\mathrm{Br} \cdots \mathrm{Br}$ bond lengths of 3.038 (1) \AA. The central Br^{-} ions are located on the $\overline{3}$ axes with the Cs^{+}ions at the centres. One of the Cs^{+}ions is enclosed in a cage formed by two of the complexes; the other Cs^{+}ion is surrounded by a puckered hexagonal bipyramid of six O atoms and two Br^{-}ions.

Introduction. N-Bromosuccinimide (SBr: 1-bromo-2,5pyrrolidinedione) is a well-known brominating agent (Filler, 1963; Horner \& Winkelmann, 1959). In the presence of bromide salt, SBr serves to add bromine to double bonds (Braude \& Waight, 1952). Bromide ion acts as a catalyst for the electron transfer oxidation of ferrocene to ferricinium ion by SBr , in all probability by forming an $\mathrm{SBr} / \mathrm{Br}^{-}$complex which is a stronger oxidant (Eberson, Barry, Finkelstein, Moore \& Ross, 1986). Finkelstein, Hart, Moore, Ross \& Eberson (1986) have found evidence that $1: 1 \mathrm{SBr} / \mathrm{Br}^{-}$com-
plexes play a vital role in the mechanism by which tetraalkylammonium bromides promote the reaction of SBr and olefins to give addition products. It was proposed that the complex (which could be isolated) decomposes slowly via an X-philic mechanism (Zefirov \& Makhenkov, 1982) to form succinimide, polymaleimide and tribromide ion. The latter is the species responsible for the addition reaction. In view of the importance of $\mathrm{SBr} / \mathrm{Br}^{-}$complexes as intermediates in these reactions, we have determined the crystal structure of the title compound in order to study the bonding situation around the $\mathrm{N}-\mathrm{Br}$ bond.

Experimental. Title compound prepared by stirring caesium bromide (5 mmol) and N-bromosuccinimide $(5.3 \mathrm{mmol})$ in acetonitrile $(100 \mathrm{ml})$ with gradual warming to 353 K , filtering the hot solution and keeping the filtrate at 273 K for 24 h . The colourless rhombohedral crystals formed were filtered off and air-dried. Density determined by flotation in $\mathrm{CHBr}_{3} / \mathrm{CHCl}_{3}$. EnrafNonius CAD-4 diffractometer with graphite monochromator, Mo $K \alpha$ radiation, crystal $0.25 \times 0.25 \times$ 0.25 mm . Unit-cell dimensions from 25 reflections with $12 \leq \theta \leq 18^{\circ}$. Space group $R \overline{3}$. Intensities from $1 / 3$ of reflection sphere with $0.07 \leq \sin \theta / \lambda \leq 0.60 \AA^{-1}$, © 1986 International Union of Crystallography
$0 \leq h \leq 16,-h \leq k \leq 16$ and $-21 \leq l \leq 21 ; \omega / 2 \theta$ scan, $\Delta \omega=0.60^{\circ}+0.50^{\circ} \tan \theta$, max. counting time 180 s ; three control reflections ($327, \overline{3} 7 \overline{4}, 43 \overline{5}$) every 2 h , no significant variation. 2677 unique reflections measured, 1876 observed with $I \geq 3 \sigma_{c}(I)$ (σ_{c} from counting statistics). Lorentz, polarization and absorption corrections, transmission factor between 0.13 and 0.21 . Cs and Br atoms located by direct methods (MULTAN80: Main, Fiske, Hull, Lessinger, Germain, Declercq \& Woolfson, 1980); C, N and O atoms from $\Delta \rho$ maps. H atom positions calculated with fixed thermal parameter $U_{\text {iso }}=0.060 \AA^{2} \quad\left(\mathrm{CH}_{2}\right.$ groups $)$. Full-matrix leastsquares refinement of structural model minimizing $\sum w(\Delta F)^{2}, w=\left[\sigma_{c}^{2}\left(\left|F_{o}\right|+\left(0.05\left|F_{o}\right|\right)^{2}+5.00\right]^{-1}\right.$. Isotropic secondary-extinction corrections, $g=8.4(5) \times$ 10^{3}, r.m.s. mosaic spread $6.9^{\prime \prime}$ (Becker \& Coppens, 1974). Refinement converged to $R=0.047, w R=$ $0.062, S=1.047,(\Delta / \sigma)<0.06$. The δR plot (Abrahams \& Keve, 1971) is close to linear with slope 1.01 and intercept 0.06 . Final $\Delta \rho$ map without significant features; max. and min. values 0.65 and $-0.45 \mathrm{e}^{-3}$. Atomic scattering factors for ions $\mathrm{Cs}^{+}, \mathrm{Br}^{-}$and neutral atoms in SBr , and anomalous-dispersion corrections from International Tables for X-ray Crystallography (1974). All computer programs used are described by Lundgren (1982).

Discussion. Atomic coordinates are given in Table 1, selected bond lengths and bond angles in Table 2.* The main feature of the structure is the trigonal pyramidal complex $\left[\mathrm{Br}(\mathrm{SBr})_{3}\right]^{-}$formed by three SBr molecules bonded to a Br^{-}ion. This complex and the environments of the two Cs^{+}ions are depicted in Fig. 1. The $\mathrm{Br}(2)$ ion is located above the centre of a $\mathrm{Br}(1)$ triangle with $\operatorname{Br}(1)-\operatorname{Br}(2) 0.833$ (1) \AA shorter than the $\operatorname{Br}(1)-$ $\mathrm{Br}(1)$ contact distances. The $\mathrm{Br}(1)-\mathrm{Br}(2)-\mathrm{Br}(1)$ angle of $79.2(1)^{\circ}$ is about 20° larger than expected for non-bonded $\operatorname{Br}(1) \cdots \operatorname{Br}(2)$ contacts. Taking the coordination number 3 of the Br^{-}ion into account the $\mathrm{SBr} \cdots \mathrm{Br}^{-}$distances are comparable to the long $\mathrm{Br} \cdots \mathrm{Br}^{-}$bond distances in unsymmetrical Br_{3}^{-}ions. In CsBr_{3} the distances are $\mathrm{Br}-\mathrm{Br}: 2.440(6), \mathrm{Br} \cdots \mathrm{Br}^{-}$: 2.698 (6) \AA (Breneman \& Willet, 1969) and in $\left(\mathrm{PBr}_{4}\right) \mathrm{Br}_{3}$ they are $\mathrm{Br}-\mathrm{Br}: 2.39(1), \mathrm{Br} \cdots \mathrm{Br}^{-}$: 2.91 (1) \AA (Breneman \& Willet, 1967). The $\left[\operatorname{Br}(\mathrm{SBr})_{3}\right]^{-}$ complex bears some resemblance to the $\mathrm{CBr}_{4} / \mathrm{Br}^{-}$ complex in solid $\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4} \mathrm{P}\right]+\left[\mathrm{CBr}_{5}\right]^{-}$(Lindner \& Kitschke-von Gross, 1976) where the $\mathrm{Br} \cdots \mathrm{Br}^{-}$interaction is much weaker, the average distance being 3.260 (4) \AA.

[^0]Table 1. Atomic coordinates $\left(\times 10^{4}, \times 10^{5}\right.$ for Cs and $\mathrm{Br})$ and equivalent isotropic thermal parameters ($\AA^{2} \times 10^{3}, \AA^{2} \times 10^{4}$ for Cs and Br)

$$
U_{e q}=\frac{1}{3} \sum_{i} \Sigma_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j} .
$$

$\mathrm{Cs}(1)$				
$\mathrm{Cs}(2)$	0	0	0	$344(3)$
$\operatorname{Br}(2)$	0	0	50000	$389(3)$
$\mathrm{Br}(1)$	$279(5)$	$16085(5)$	$20372(5)$	$334(3)$
$\mathrm{N}(1)$	$85(4)$	$2626(4)$	$3885(3)$	$360(3)$
$\mathrm{C}(2)$	$769(5)$	$2954(5)$	$4499(3)$	$32(2)$
$\mathrm{O}(2)$	$1375(4)$	$2589(4)$	$4647(3)$	$49(2)$
$\mathrm{C}(3)$	$589(6)$	$3769(6)$	$4916(4)$	$42(3)$
$\mathrm{C}(4)$	$-360(6)$	$3789(5)$	$4526(4)$	$40(3)$
$\mathrm{C}(5)$	$-647(5)$	$3011(5)$	$3875(4)$	$36(3)$
$\mathrm{O}(5)$	$-1361(4)$	$2761(4)$	$3421(3)$	$54(2)$
$\mathrm{H}(31)$	425	3568	5426	60
$\mathrm{H}(32)$	1233	4477	4916	60
$\mathrm{H}(4)$	9028	3568	4851	60
$\mathrm{H}(42)$	9837	4512	4367	60

Table 2. Selected interatomic distances (\AA) and angles ${ }^{\circ}$)

The superscripts indicate the following sites: (i) $x-y, x, 1-z$; (ii) $-\frac{2}{3}+y,-\frac{1}{3}+y-x, \frac{2}{3}-z$; (iii) $-y, x-y, z$; (iv) $\frac{1}{3}-x, \frac{2}{3}-y, \frac{2}{3}-z$; (v) $-\frac{1}{3}+y-x, \frac{1}{3}-x, \frac{1}{3}+z$; (vi) $\frac{1}{3}+x-y, \frac{2}{3}+x, \frac{2}{3}-z$.

$\mathrm{Cs}(1)-\mathrm{O}(5)$	(6x)	3.244 (5)	$\mathrm{Cs}(2)-\mathrm{O}(2)$	(6x)	3.207 (5)
$\mathrm{Cs}(1) \sim \mathrm{Br}(2)$	(2x)	3.651 (2)	$\mathrm{Cs}(2)-\mathrm{Br}(1)$	(6x)	3.946 (1)
$\mathrm{O}(2)-\mathrm{O}\left(2^{\text {i }}\right.$)	(2x)	3.389 (6)	$\mathrm{O}(5)-\mathrm{O}\left(5^{\text {II }}\right.$)	(2x)	3.255 (5)
$\operatorname{Br}(1)-\operatorname{Br}(2)$	(3x)	3.038 (1)	$\operatorname{Br}(1)-\operatorname{Br}\left(1^{\text {iii }}\right)$	(2x)	3.871 (1)
$\mathrm{Br}(1)-\mathrm{N}(1)$		1.869 (5)	$\mathrm{Br}(1)-\mathrm{O}\left(2^{\text {iv }}\right.$)		3.780 (5)
$\mathrm{N}(1)-\mathrm{C}(2)$		1.381 (7)	$\mathrm{N}(1)-\mathrm{O}\left(2^{1}\right)$		3.183 (7)
$\mathrm{C}(2)-\mathrm{O}(2)$		1.219 (8)	$\mathrm{C}(2)-\mathrm{O}\left(2^{\prime}\right)$		2.968 (8)
C(2)-C(3)		1.488 (9)	$\mathrm{C}(3)-\mathrm{O}\left(2^{1}\right)$		3.126 (8)
C(3)-C(4)		1.515 (10)	$\mathrm{C}(3)-\mathrm{O}\left(5^{v}\right)$		3.501 (8)
$\mathrm{C}(4)-\mathrm{C}(5)$		1.507 (9)	$\mathrm{C}(4)-\mathrm{O}\left(2^{\prime}\right)$		3.319 (8)
$\mathrm{C}(5)-\mathrm{O}(5)$		1-198(8)	$\mathrm{C}(4)-\mathrm{O}\left(5^{\text {li) }}\right.$)		3.380 (8)
$\mathrm{C}(5)-\mathrm{N}(1)$		1.377 (8)	$\mathrm{C}(5)-\mathrm{O}(2)$		3.328 (8)
$\mathrm{Br}(1)-\mathrm{C}\left(2^{\text {iv }}\right.$)		3.765 (6)	$\mathrm{C}(5)-\mathrm{O}\left(5^{\prime \prime}\right)$		3.506 (8)
$\mathrm{Br}(1)-\mathrm{N}(1)-\mathrm{C}(2)$		123.1 (4)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$		105.7 (5)
$\mathrm{Br}(1)-\mathrm{N}(1)-\mathrm{C}(5)$		122.4 (4)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$		105.3 (5)
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(5)$		114.1 (5)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{O}(5)$		128.3 (6)
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)$		107.4 (5)	$\mathrm{N}(1)-\mathrm{C}(5)-\mathrm{C}(4)$		107.0 (5)
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{O}(2)$		123.3 (5)	$\mathrm{N}(1)-\mathrm{C}(5)-\mathrm{O}(5)$		124.7 (6)
$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{C}(3)$		129.3 (6)			

Fig. 1. Stereoview of the $\left[\mathrm{Br}(\mathrm{SBr})_{3}\right]^{-}$complex and the Cs coordination.

Apart from the $\mathrm{N}(1)-\mathrm{Br}(1)$ bond length the geometry of the SBr molecule does not differ from that of pure solid SBr (Jabay, Pritzkow \& Jander, 1977), N-chlorosuccinimide (Brown, 1961) and succinimide (Mason, 1961). The $\mathrm{N}(1)-\mathrm{Br}(1)$ bond is $0.052(8) \AA$ longer in the $\left[\mathrm{Br}(\mathrm{SBr})_{3}\right]^{-}$complex than in pure SBr . The endocyclic torsion angles* indicate a small twist of the succinimide ring. The $\mathrm{Br}(1)$ atom is in the least-squares plane through the N and C atoms of SBr , but both O atoms are on the same side of the plane. The angle between the planes through $O(2) \mathrm{C}(2) \mathrm{N}(1) \mathrm{C}(3)$ and $\mathrm{O}(5) \mathrm{C}(5) \mathrm{N}(1) \mathrm{C}(4)$ is $8.0(2)^{\circ}$.

The $\mathrm{Cs}(1)$ ion is surrounded by six $\mathrm{O}(5)$ atoms and two $\operatorname{Br}(2)$ ions in a slightly puckered hexagonal bipyramid. The $\mathrm{Cs}(2)$ ion is enclosed in a cage formed by two $\left[\mathrm{Br}(\mathrm{SBr})_{3}\right]^{-}$complexes. It has six $\mathrm{O}(2)$ atoms as nearest neighbours forming a puckered hexagon. Twelve-coordination is completed by six $\operatorname{Br}(1)$ atoms at 3.946 (1) \AA. There are six C(2) atoms at 3.826 (6) \AA.

The $R \overline{3}$ symmetry locates the SBr molecules in six columns per unit cell with the centres of the five-rings very near the 3_{1} axes. Each $\left[\mathrm{Br}(\mathrm{SBr})_{3}\right]^{-}$complex is bonded to five Cs^{+}ions, two of which are located on the same $\overline{3}$ axis as the central $\operatorname{Br}(2)$ ion (cf. Fig. 1) with the other three on three adjacent $\overline{3}$ axes. The $\mathrm{Cs}-\mathrm{O}, \mathrm{Cs}-\mathrm{Br}$ and $\mathrm{Br} \cdots \mathrm{Br}$ bonds connect the structure in three dimensions. There are only a few short intermolecular contact distances (cf. Table 2).

The structure of $\mathrm{Cs}\left[\mathrm{Br}(\mathrm{SBr})_{3}\right]$ illustrates well the properties to be expected for an $\mathrm{SBr} / \mathrm{Br}^{-}$complex capable of undergoing the reactions described in the introduction. There is a distinct $\mathrm{SBr} \cdots \mathrm{Br}$ bond and the $\mathrm{N}-\mathrm{Br}$ bond is slightly elongated. The bonding situation

* See deposition footnote.
around the N atom facilitates the X-philic mechanism in which the $\mathrm{Br}-\mathrm{Br}$ bond is formed with the succinimide anion leaving synchronously. Also, the formation of the $\mathrm{Br}-\mathrm{Br}$ bond is expected to enhance the oxidizing power of the complex.

References

Abrahams, S. C. \& Keve, E. T. (1971). Acta Cryst. A27, 157-165.
Becker, P. J. \& Coppens, P. (1974). Acta Cryst. A 30, 129-153.
Braude, E. A. \& Waight, E. S. (1952). J. Chem. Soc. pp. 1116-1122.
Breneman, G. L. \& Willet, R. D. (1967). Acta Cryst. 23, 467-471.
Breneman, G. L. \& Willet, R. D. (1969). Acta Cryst. B25, 1073-1076.
Brown, R. N. (1961). Acta Cryst. 14, 711-715.
Eberson, L., Barry, J. E., Finkelstein, M., Moore, W. M. \& Ross, S. D. (1986). Acta Chem. Scand. Ser. B, 40, 402-403.
Filler, R. (1963). Chem. Rev. 63, 21-43.
Finkelstein, M., Hart, S. A., Moore, W. M., Ross, S. D. \& Eberson, L. (1986). J. Org. Chem. In the press.
horner, L. \& Winkelmann, E. H. (1959). Angew. Chem. 71, 349-392.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht).
Jabay, O., Pritzkow, H. \& Jander, J. (1977). Z. Naturforsch. Teil B, 32, 1416-1470.
Lindner, H. J. \& Kitschee-von Gross, B. (1976). Chem. Ber. 109, 314-319.
Lundgren, J.-O. (1982). Report No. UUIC-B13-4-05. Univ. of Uppsala, Sweden.
Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
MASON, R. (1961). Acta Cryst. 14, 720-724.
Zefirov, N. S. \& Makhenkov, D. I. (1982). Chem. Rev. 82, 615-624.

Acta Cryst. (1986). C42, 1502-1505

Structure du Complexe Uranyle Pentahydraté de l'Acide Hydroxyméthylphosphonique

Par A. Britel,* M. Wozniak, \dagger J. C. Boivin,* G. Nowogrocki* et D. Thomas*
Equipe de Cristallochimie et Physicochimie du Solide UA CNRA n ${ }^{\circ} 452$ et Laboratoire d'Hydrométallurgie, Ecole Nationale Supérieure de Chimie de Lille, BP 108, 59652 Villeneuve d'Ascq CEDEX, France

(Rę̧u le 18 décembre 1985, accepté le 2 mai 1986)

> Abstract. Uranyl hydroxymethylphosphonate pentahydrate, $\mathrm{UO}_{2}\left(\mathrm{HOCH}_{2} \mathrm{PO}_{3}\right) .5 \mathrm{H}_{2} \mathrm{O}, M_{r}=470 \cdot 1$, monoclinic, $\quad P 2_{1} / c, \quad a=7.004$ (9),$\quad b=8.579$ (4),$\quad c=$

[^1]16.754 (9) $\AA, \beta=90.65$ (5) ${ }^{\circ}, V=1007$ (2) $\dot{\AA}^{3}, Z=4$, $D_{m}=3.04(5), \quad D_{x}=3.10 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda(\mathrm{Mo} K \alpha)=$ $0.7107 \AA, \mu=154 \mathrm{~cm}^{-1}, \quad F(000)=856, T=298 \mathrm{~K}$, $R=0.04$ for 1495 independent reflexions. Linear UO_{2}^{2+} ions are coordinated to five additional oxygens located in a plane perpendicular to the uranyl axis. The O of the © 1986 International Union of Crystallography

[^0]: * Lists of structure amplitudes, anisotropic thermal parameters and selected torsion angles have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 43166 (20 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

[^1]: * Equipe de Cristallochimie et Physicochimie du Solide.
 \dagger Laboratoire d'Hydrométallurgie.

